
CTU Open 2021
Presentation of solutions

November 27, 2021

Cyanide Rivers

Cyanide Rivers

I Just count the largest consecutive block of zeroes...

Silver Star Stands Alone

Silver Star Stands Alone

I Implement brute-force.

I Use dynamic programming.

I Alternative solution: Use time and precalculate answers.

Silver Star Stands Alone

I Implement brute-force.

I Use dynamic programming.

I Alternative solution: Use time and precalculate answers.

Silver Star Stands Alone

I Implement brute-force.

I Use dynamic programming.

I Alternative solution: Use time and precalculate answers.

Organ-free Man

Organ-free Man

I

f (x) =

{
x! if 0 ≤ x ≤ 9
(x mod 10)! + f (bx/10c) otherwise

I Iteration is not enough! y = 109 = f (2233455555666677778888889999999999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999)

Organ-free Man

I

f (x) =

{
x! if 0 ≤ x ≤ 9
(x mod 10)! + f (bx/10c) otherwise

I Iteration is not enough! y = 109 = f (2233455555666677778888889999999999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999)

Organ-free Man

I Instead of adding digit i to the result for the i + 1-th time, we
add digit i + 1 once, because (i + 1)i ! = (i + 1)!

I ⇒ Greedily add largest possible digits starting from the end

I Take care of y = 1 = f (0)

Organ-free Man

I Instead of adding digit i to the result for the i + 1-th time, we
add digit i + 1 once, because (i + 1)i ! = (i + 1)!

I ⇒ Greedily add largest possible digits starting from the end

I Take care of y = 1 = f (0)

Organ-free Man

I Instead of adding digit i to the result for the i + 1-th time, we
add digit i + 1 once, because (i + 1)i ! = (i + 1)!

I ⇒ Greedily add largest possible digits starting from the end

I Take care of y = 1 = f (0)

Terrace Hill

Terrace Hill

I Use a stack algorithm to find bridges.

for(ll idx=0; idx<N; ++idx){

ll height = a[idx];

while(s.back().height < height)

s.pop_back();

if(s.back().height == height) {

res += idx - s.back().idx - 1;

s.back().idx = idx;

} else {

s.push_back({idx, height});

}

}

I O(N)

Terrace Hill

I Use a stack algorithm to find bridges.

for(ll idx=0; idx<N; ++idx){

ll height = a[idx];

while(s.back().height < height)

s.pop_back();

if(s.back().height == height) {

res += idx - s.back().idx - 1;

s.back().idx = idx;

} else {

s.push_back({idx, height});

}

}

I O(N)

Terrace Hill

I Use a stack algorithm to find bridges.

for(ll idx=0; idx<N; ++idx){

ll height = a[idx];

while(s.back().height < height)

s.pop_back();

if(s.back().height == height) {

res += idx - s.back().idx - 1;

s.back().idx = idx;

} else {

s.push_back({idx, height});

}

}

I O(N)

Eidam Sand Lair

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,

2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,

3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;

I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot,

we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above

I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower

I possibly: we go by foot to the lift and use lift, if the lift is
faster

I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster

I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Eidam Sand Lair

I How to get to the surface from floor Yp underground while
possibly using the lift?

I We can observe that only 3 solutions are reasonable:

1. go only by foot,
2. go only by lift,
3. go by foot to lift and the rest by lift.

I Reasoning
I If lift is below

I if we use the lift, then it is not worth going any length by foot;
I if we go by foot, we go by foot the whole way . . .

I If the lift is above
I we go by foot if the lift is slower
I possibly: we go by foot to the lift and use lift, if the lift is

faster
I if the lift is ’very’ fast, then we call it and wait for it

I just compute all of these and take the minimum

Burizon Fort

Burizon Fort

I Well-known: every m ≤ 1012 has at most 6 720 divisors.

I Divisors di sorted in ascending order.

I Let si = d1 + · · ·+ di .

I Claim: The number m is practical iff for the smallest i , such
that si >= m − 1, every number from {1, . . . , si} can be
represented as a sum of a subset of the first i divisors.

Burizon Fort

Proof of the Claim:

I We go through i = 1, ... and notice that in the case when
some number from 1, . . . , si+1 cannot be represented using
the first i + 1 divisors, then this number cannot be
represented even if we allow the other divisors.

si + 1 cannot be ever represented, be-
cause it is larger than the sum of first
i divisors and smaller than each of the
larger divisors

0 si si + 1 di+1 0 sidi+1

di+1 di+1 + si+di+1

0 si+1

Every number up to si+1 can be rep-
resented as a sum of a subset of the
first i + 1 divisors

Is di+1 > si + 1 ?
Yes No

Screamers in the Storm

Screamers in the Storm

I Task: Count the number of sequences of integers of length n
such that no two consecutives numbers have a common
divisor greater than 1.

I The sequences can be long, up to 1018, but contain only small
numbers, up to 66.

I Solution: Consider a graph, where integers up to 66 are
vertices.

I We connect i and j by an edge if and only if gcd(i , j) = 1.

I This means that any sequence can be created by walking
along edges and it will always be valid.

I The number of sequences is the number of walks through this
graph of length n.

Screamers in the Storm

I Task: Count the number of sequences of integers of length n
such that no two consecutives numbers have a common
divisor greater than 1.

I The sequences can be long, up to 1018, but contain only small
numbers, up to 66.

I Solution: Consider a graph, where integers up to 66 are
vertices.

I We connect i and j by an edge if and only if gcd(i , j) = 1.

I This means that any sequence can be created by walking
along edges and it will always be valid.

I The number of sequences is the number of walks through this
graph of length n.

Screamers in the Storm

I Let M ∈ NP×P be the incidence matrix of the graph for
integers up to P.

I Then Mi,j = 1 if and only if gcd(i , j) = 1.

I The value of Mn−1
i ,j will be the number of walks of length n

that start on i and end on j .

I Then sum of all elements of Mn−1 is the number of valid
sequences of length n.

Screamers in the Storm

I This can be shown be induction. M0 = E has zeroes
everywhere, except ones on the diagonal.

I This corresponds to all sequences of length 1.

I Now if Mn−1 is the number of sequences of length n, then Mn

will be the number of sequences of length n + 1.

I Mn
i ,j = (Mn−1 ·M)i ,j =

∑P
k=1M

n−1
i ,k ·Mk,j is the number of

walks that start on i , then do n − 1 of steps ending on any k
and then go directly from k to j .

Screamers in the Storm

I Use fast exponentiation to get Mn in O(log(n)) matrix
multiplications.

I The complexity of the solution
I Build the graph, that is compute Mi,j using gcd(i , j) in
O(P2 log(P)) for all 1 ≤ i , j ≤ P.

I Then compute MN in O(P3 log(N)).
I With N ≤ 1018 and P ≤ 66 safely passes the time limit.

TomTom Cruise

TomTom Cruise

I Task: Find the cheapest path which can start and end on any
vertex and must use at least one edge. The cost is the sum of
costs of all edges + cost of the start and end.

I Solution: Be smart with Dijkstra.

I Several possible solutions.

TomTom Cruise

I Let G be the input graph. Use Dijkstra to search the state
space where each vertex is a pair (s, v) where s ∈ V (G) is the
start of the path and v ∈ V (G) is the current vertex of the
path.

I Essentialy simulate exploring the graph using Dijkstra but
keep track of which vertex was the starting one.

I When v is first reached as (s1, v) and (s2, v) with s1 6= s2,
then the total cost of paths from (s1, v) and (s2, v) is the cost
of the shortest walk that includes v and starts in s1 and ends
in s2.

I It suffices to reach every v only twice using two different
starts.

I The shortest valid path will be found when considering some
v that belongs to it.

I The complexity is that of Dijkstra’s algorithm:
O((n + m) log(n)).

TomTom Cruise

I Let G be the input graph. Use Dijkstra to search the state
space where each vertex is a pair (s, v) where s ∈ V (G) is the
start of the path and v ∈ V (G) is the current vertex of the
path.

I Essentialy simulate exploring the graph using Dijkstra but
keep track of which vertex was the starting one.

I When v is first reached as (s1, v) and (s2, v) with s1 6= s2,
then the total cost of paths from (s1, v) and (s2, v) is the cost
of the shortest walk that includes v and starts in s1 and ends
in s2.

I It suffices to reach every v only twice using two different
starts.

I The shortest valid path will be found when considering some
v that belongs to it.

I The complexity is that of Dijkstra’s algorithm:
O((n + m) log(n)).

TomTom Cruise

I Time limit also allows slower solutions:

I Pick at random which vertices are possible starts and which
possible ends.

I Each vertex is a possible start with probability 1/2.

I Use Dijkstra to find the shortest path from all starts to any
end.

start

end

G

TomTom Cruise

I We missed the optimal path only if its both endpoints are
both starts or both ends.

I This happens with probability 1/2.

start

end

G

optimal path

TomTom Cruise

I We missed the optimal path only if its both endpoints are
both starts or both ends.

I This happens with probability 1/2.

start

end

G

optimal path

TomTom Cruise

I Repeating this k times gives the correct solution with
probability 2−k .

I With k = 50 we get the correct result in 99.9999999999999%
and fit into the time limit.

I Total complexity is O(k(n + m) log(n))

TomTom Cruise

I We can use a similar approach without randomization

I Use any set of patterns which ensures that each pair of
vertices is considered as start and end.

X.X.X.X.X.X.X.X.

XX..XX..XX..XX..

XXXX....XXXX....

XXXXXXXX........

I Correctness of this pattern is left as an excercise to the
listener.

I Complexity: O((n + m) log(n)2).

Bread Pit

Bread Pit

I Observation: After meeting at least log(N) crossroads, there
will be only 1 bread.

I Contract all paths of length 2 in tree: And simply simulate the
process in ON log(N)

Bread Pit

I Observation: After meeting at least log(N) crossroads, there
will be only 1 bread.

I Contract all paths of length 2 in tree: And simply simulate the
process in ON log(N)

Tone Banks

Tone Banks

I Parsing of the old record – straightforward, but tedious
implementation

I Output of the new record – recursively nest letters in a linear
fashion

”abbad”:

Tone Banks

I Parsing of the old record – straightforward, but tedious
implementation

I Output of the new record – recursively nest letters in a linear
fashion

”abbad”:

Tone Banks

I Parsing of the old record – straightforward, but tedious
implementation

I Output of the new record – recursively nest letters in a linear
fashion

”abbad”:

Tone Banks

I Is the output grid large enough?

I Maximal length of a word in the input grid / 100×100
4×4 = 625

I The linear recursive approach needs 4 rows per letter in the
worst case ⇒ we can fit any word of length 3000

4 = 750

Tone Banks

I Is the output grid large enough?

I Maximal length of a word in the input grid / 100×100
4×4 = 625

I The linear recursive approach needs 4 rows per letter in the
worst case ⇒ we can fit any word of length 3000

4 = 750

Tone Banks

I Is the output grid large enough?

I Maximal length of a word in the input grid / 100×100
4×4 = 625

I The linear recursive approach needs 4 rows per letter in the
worst case ⇒ we can fit any word of length 3000

4 = 750

Win Diesel

Win Diesel

I Proceed “BFS-like” algorithm (possibly with priority queue)

I Use LCA algorithm to find lengths of consecutively visited
nodes.

I ON log(N)

Win Diesel

I Proceed “BFS-like” algorithm (possibly with priority queue)

I Use LCA algorithm to find lengths of consecutively visited
nodes.

I ON log(N)

Mad Diamond

Mad Diamond

I Your task was to solve a brain teaser and figure out how to
transport a marble from the start point to the end point. At
the same time you need to minimize the total sum of degrees
that the maze needs to be rotated by in order to achieve that.

0

90

180

270

start

end

Mad Diamond

I The task can be modelled as a graph search.

I The state configuration consists of the layer at which ball is
located, the rotation of the maze in degrees and the angular
position of the ball in the maze, in degrees as well.

I There were at most 20 layers.

I Therefore as a result there might be at most
20 · 360 · 360 = 2592000 reachable states.

Mad Diamond
I There are a few tricky cases to handle. In the case below if

the ball starts rolling down to the right we need to decide
whether the ball should continue straight through the circular
segment or rather fall through the radial segment.

0

90

180

270

start

end

Mad Diamond

I That needs to be decided based on the angle at which ball
(considering the direction of gravity) meets the crossing
between radial and circular segments.

0

90

180

270

start

end

Mad Diamond

I Another potential downfall is that at the start point the
marble can start at such a position that the gravity will move
it somewhere else right away.

I And similar thing applies to the finishing of the puzzle as well
that the marble has to stop at the end point precisely, not just
run through it which might make the puzzle impossible to
solve.

Thank you for your attention!

